Способы обработки конических поверхностей. Технология обработки конических поверхностей Обтачивание конических внутренних и наружных поверхностей

Обрабатываемый конец заготовки должен выступать из патрона не более 2,0 — 2,5 диаметра заготовки. Главную режущую кромку резца при помощи шаблона или угломера устанавливают под нужный угол конуса. Обтачивать конус можно при поперечной и продольной подачах.

При выступании конуса заготовки из патрона больше 20 мм или длине режущей кромки резца свыше 15 мм возникают вибрации, которые делают невозможным обработку конуса. Поэтому этот способ применяют ограниченно.

Запомните! Длина конуса, обрабатываемого широкими резцами, не должна превышать 20 мм.

Вопросы

  1. Когда обрабатывают конус широкими резцами?
  2. В чем заключается недостаток обработки конусов широкими резцами?
  3. Почему конус заготовки не должен выходить из патрона более 20 мм?

Для обтачивания на токарном станке коротких наружных и внутренних конических поверхностей с углом уклона конуса α = 20° нужно повернуть верхнюю часть суппорта относительно оси станка под углом α.

При таком способе подачу можно производить от руки, вращая рукоятку винта верхней части суппорта, и лишь в наиболее современных токарных станках имеется механическая подача верхней части суппорта.

Если угол а задан, то верхнюю часть суппорта повертывают, используя деления, нанесенные обычно в градусах на диске поворотной части суппорта. Устанавливать минуты приходится на глаз. Таким образом, чтобы повернуть верхнюю часть суппорта на 3°30′ нужно нулевой штрих поставить примерно между 3 и 4°.

Недостатки обтачивания конических поверхностей с поворотом верхней части суппорта:

  • снижается производительность труда и ухудшается чистота обработанной поверхности;
  • получаемые конические поверхности сравнительно короткие, ограниченные длиной хода верхней части суппорта.

Вопросы

  1. Как нужно установить верхнюю часть суппорта, если угол а уклона конуса задан по чертежу с точностью до 1°?
  2. Как установить верхнюю часть суппорта, если угол задан с точностью до 30′ (до 30 минут)?
  3. Перечислите недостатки обтачивания конических поверхностей с поворотом верхней части суппорта.

Упражнения

  1. Настройте станок для точения конической поверхности под углом 10°, 15°, 5°, 8°30′, 4°50′.
  2. Изготовьте кернер по , помещенной ниже.

Технологическая карта на изготовление кернера

Заготовка Поковка
Материал Сталь У7
№ п/п Последовательность обработки Инструменты Оборудование и приспособления
рабочий разметочный и контрольно-измерительный
1 Отрезать заготовку с припуском Ножовка слесарная Штангенциркуль, линейка измерительная Тиски слесарные
2 Подрезать торец в размер длины с припуском на центровку Резец подрезной Штангенциркуль Токарный станок, патрон трехкулачковый
3 Центровать с одной стороны Сверло центровочное Штангенциркуль Токарный станок, патрон сверлильный
4 Накатать цилиндр на длине L— (l 1 +l 2)

Накатка Штангенциркуль Патрон токарный трехкулачковый, центр
5 Обточить конус на длине l 1 под углом α, обточить заострение под углом 60° Резец проходной отогнутый Штангенциркуль
6 Подрезать торец с зацентровкой по длине l Резец проходной отогнутый Штангенциркуль Патрон токарный трехкулачковый
7 Обточить конус бойка на длине l 2 Резец проходной отогнутый Штангенциркуль Патрон токарный трехкулачковый
8 Обточить закругление бойка Резец проходной отогнутый Шаблон радиусный Патрон токарный трехкулачковый

«Слесарное дело», И.Г.Спиридонов,
Г.П.Буфетов, В.Г.Копелевич

Конические отверстия с большим углом при вершине обрабатывают следующим образом: заготовку закрепляют в патроне передней бабки и для уменьшения припуска на растачивание отверстие обрабатывают сверлами разного диаметра. Сначала заготовку обрабатывают сверлом меньшего диаметра, затем сверлом среднего диаметра и, наконец, сверлом большого диаметра. Последовательность сверления детали под конус Растачивают конические отверстия обычно путем поворота верхней части…

При обработке конических поверхностей возможны следующие виды брака: неправильная конусность, отклонения в размерах конуса, отклонения в размерах диаметров оснований при правильной конусности, непрямолинейность образующей конической поверхности. Неправильная конусность получается главным образом из-за неточно установленного резца, неточного поворота верхней части суппорта. Проверив установку корпуса задней бабки, верхней части суппорта перед началом обработки, можно предотвратить этот вид…

В шестом и седьмом классах вы познакомились с различными работами, выполняемыми на токарном станке (например, наружное цилиндрическое точение, отрезание деталей, сверление). Многие заготовки, обрабатываемые на токарных станках, могут иметь наружную или внутреннюю коническую поверхность. Детали с конической поверхностью широко используют в машиностроении (например, шпиндель сверлильного станка, хвостовики сверл, центры токарного станка, отверстие пиноли задней бабки)….

Обработка конических поверхностей – это технически сложный процесс, который выполняется на токарном оборудовании.

Кроме специального инструмента необходима высокая квалификация (разряд) оператора. Обработка конических поверхностей на токарных станках делится на две категории:

  • работа с наружными конусами;

  • работа с коническими отверстиями.

Каждый вид обработки обладает своими техническими особенностями и нюансами, которые должны учитываться токарем.

Особенности обработки наружного конических поверхностей

В силу своей специфической формы, работа с наружными коническими поверхностями обладает своей спецификой.

При несоответствии инструмента, дины фигуры и ее физических характеристик поверхность детали приобретает волнистую форму, что негативно сказывается на качестве заготовки и ее дальнейшей пригодности в эксплуатации.

Причины возникновения волнистости:

  • длина конуса более 15 мм;

  • большой вылет резца или плохое крепление детали;

  • увеличение длины заготовки с пропорциональным уменьшением ее диаметра (толщины).

Обработка конических поверхностей на токарном станке без эффекта волн производится при соблюдении таких условий:

  • не нужно достигать высокого класса обработки;

  • при закреплении деталей должен быть большой угол наклона конуса относительно стационарного резца;

  • длина конуса не превышает 15 мм;

  • заготовка конической формы изготовлена из твердого сплава.

Способы обработки конических поверхностей выбираются исходя из указанных критериев.

Конические отверстия

Для обработки конических отверстий в сплошном материале существует два этапа:

  • сверление;

  • развертывание;

В первом случае используют сверло с диаметром равным или меньшим на 2-3 мм чем предполагаемое отверстие.

Размерную дельту уменьшают за счет финальной расточки. Сначала выбирается крупное сверло, которым пробивается отверстие, на глубину, меньше заданной. Затем тонкими сверлами производится каскадное сверление отверстия и доведение глубины до заданной.

При использовании нескольких сверл, внутренний конус соответствует заданным размерам и не имеет ступенчатых переходов.

При развертке отверстий используются сверла с тремя видами рабочей поверхности:

  • первичные (обдирочные). Поверхность сверла имеет редкие грубые зубья, расположенные по винтовой спирали. При работе с этим сверлом снимается большой слой материала и формируется профиль отверстия;

  • вторичное. У этого сверла больше канавок и зубьев, что позволяет добиться более четкого профиля отверстия и убрать излишки металла внутри;

  • третье (чистовое). Поверхность этого сверла имеет прямые зубья, которые позволяют сделать «чистую» проходку и убрать ступенчатый эффект после двух предыдущих разверток.

Глубину и диаметр полученных отверстий проверяют при помощи пробок-калибров.

Обработка цилиндрических поверхностей

Обработка цилиндрических поверхностей на токарном станке – это две разные технологии, одна из которых позволяет работать с внешней поверхностью (валы, втулки, диски), а другая – с внутренней (отверстия).

Для работы используются резцы, сверла, развертки.

Использование определенного типа инструмента зависит от диаметра отверстия (толщины вала), класса чистоты обработки и шероховатости поверхности.

Детали с цилиндрической формой широко используются в машиностроении и тяжелой промышленности, а качество отверстий в сплошном материале определяет степень стыковки элементов конструкции, общую механическую прочность узла и длительность эксплуатации изделия.

Обработка наружных цилиндрических поверхностей заключается в доведении заготовки до заданной толщины путем снятия стружки при помощи резца. Для этого деталь располагается параллельно полу и закрепляется на токарном станке.

Проходом резца вдоль поверхности вращения позволяет достигнуть необходимого класса обработки и толщины детали.

Обработка цилиндрических поверхностей наружного типа делается в три этапа:

  • черновая обточка. При таком методе получают шероховатость до 3-го класса и точность поверхности до 5-го;

  • чистовая обработка. Класс точности возрастает до 4-го, а шероховатость до 6-го;

  • чистовая тонкая (сверхточная). Степень шероховатости на уровне 9-го класса, а точность до 2-го.

В зависимости от желаемых показателей мастер использует одну или несколько стадий обработки.

Ввиду того, что при изготовлении многоступенчатых валов из цельной заготовки значительная часть материала становится стружкой, в современном производстве заготовки получают методом литья, а на станке проводится доводка детали до заданных параметров.

Обработка внутренних цилиндрических поверхностей – это достижение заданного класса точности при работе с отверстиями.

По своему типу отверстия делятся на категории:

  • сквозные;

  • глухие (досверленные до определенной глубины);

  • глубокие со ступенчатой структурой (несколько диаметров на разных глубинах).

Исходя из типа отверстия и его габаритных размеров, применяются сверла определенной формы и диаметра.

Для достижения заданного класса точности мастера используют несколько разновидностей инструментов и производят обработку внутренней поверхности в три этапа, так же, как и с внешним цилиндром (черновое сверление, чистовое и высокоточное).

Тип инструмента зависит от твердости материала и заданных технических характеристик отверстия.

Современные технологии обработки конических и цилиндрических поверхностей демонстрируются на ежегодной выставке « ».

Цель работы

1. Знакомство с методами обработки конических поверхностей на токарных станках.

2. Анализ достоинств и недостатков методов.

3. Выбора способа изготовления конической поверхности.

Материалы и оборудование

1. Токарно-винторезный станок модели ТВ-01.

2. Необходимый набор гаечных ключей, режущего инструмента, угломеры, штангенциркуль, заготовки изготавливаемых деталей.

Порядок выполнения работы

1. Прочитайте внимательно основные сведения по теме работы и разберитесь в общих сведениях о конических поверхностях, способах их обработки с учетом основных достоинств и недостатков.

2. С помощью учебного мастера ознакомьтесь со всеми способами обработки конических поверхностей на токарно-винторезном станке.

3. Выполните индивидуальное задание преподавателя по выбору способа изготовления конических поверхностей.

1. Название и цель работы.

2. Схема прямого конуса с указанием основных элементов.

3. Описание основных методов обработки конических поверхностей с приведением схем.

4. Индивидуальное задание с приведением расчетов и обоснования выбора того или иного метода обработки.

Основные положения

В технике часто используются детали с наружными и внутренними коническими поверхностями, например, конические шестерни, ролики конических подшипников. Инструменты для обработки отверстий (сверла, зенкеры, развертки) имеют хвостовики со стандартными конусами Морзе; шпиндели станков имеют конусную расточку под хвостовики инструментов или оправок и т. п.

Обработка деталей с конической поверхностью связана с образованием конуса вращения или усеченного конуса вращения.

Конусом называется тело, образованное всеми отрезками, соединяющими некоторую неподвижную точку с точками окружности в основании конуса.

Неподвижная точка называется вершиной конуса .

Отрезок, соединяющий вершину и любую точку на окружности, называется образующей конуса.

Осью конуса , называется перпендикуляр, соединяющий вершину конуса с основанием, а образующийся отрезок прямой является высотой конуса .

Конус считается прямым или конусом вращения , если ось конуса проходит через центр окружности в его основании.

Плоскость, перпендикулярная оси прямого конуса, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом вращения .

Усеченный конус характеризуется следующими элементами (рис. 1):

1. D и d – диаметры и большего именьшего оснований конуса;

2. l –высота конуса, расстояние между основаниями конуса;

3. угол конуса 2a – угол между двумя образующими, лежащими в одной плоскости, проходящей через ось конуса;

4. угол уклона конуса a – угол между осью и образующей конуса;

5. уклон У – тангенс угла уклона У = tg a = (D d )/(2l ) , который обозначается десятичной дробью (например: 0,05; 0,02);

6. конусность – определяется по формуле k = (D d )/l , и обозначается с использованием знака деления (например, 1:20; 1:50 и т. д.).

Конусность численно равна удвоенному уклону.

Перед размерным числом, определяющим уклон, наносят знак Ð, острый угол которого направлен в сторону уклона. Перед числом, характеризующим конусность, наносят знак, острый угол которого должен быть направлен в сторону вершины конуса.

В массовом производстве на станках-автоматах для точения конических поверхностей используются копировальные линейки на один неизменный угол наклона конуса, который может изменяться только при переналадке станка с другой копировальной линейкой.

В единичном и мелкосерийном производстве на станках с ЧПУ точение конических поверхностей с любым углом конуса при вершине осуществляется подбором соотношения скоростей продольной и поперечной подачи. На станках, не оснащенных ЧПУ, обработка конических поверхностей может быть произведена четырьмя способами, перечисленными ниже.

Обработка конических поверхностей на токарных станках производится тремя способами .

Первый способ

Первый способ заключается в том, что корпус задней бабки смещают в поперечном направлении на величину h (рис. 15, а). Вследствие этого ось заготовки образует определенный угол а с осью центров, а резец при своем движении обтачивает коническую поверхность. Из схем видно, что

h = L sin a; (14)

tgα=(D-d)/2l; (15)

Решая совместно оба уравнения, получим

h=L((D-d)/2l)cosα. (16)

Для изготовления точных конусов этот способ непригоден вследствие неправильного положения центровых отверстий относительно центров.

Второй и третий способ

Второй способ (рис. 15, б) заключается в том, что резцовые салазки поворачивают на угол а, определяемый уравнением (15). Так как подача в этом случае осуществляется обычно вручную, данный способ используют при обработке конусов небольшой длины. Третий способ основан на применении специальных приспособлений, имеющих копировальную линейку 1, укрепленную на задней стороне станины на кронштейнах 2 (рис. 15, в). Ее можно устанавливать под требуемым углом к линии центров . По линейке скользит ползун 3, соединенный через палец 4 и кронштейн 5 с поперечной кареткой 6 суппорта. Винт поперечной подачи каретки разобщен с гайкой. При продольном перемещении всего суппорта ползун 3 будет двигаться по неподвижной линейке 1, сообщая одно-

Рис. 15. Схемы обработки конических поверхностей

временно поперечное смещение каретке 6 суппорта. В результате двух движений резец образует коническую поверхность, конусность которой будет зависеть от угла установки копировальной линейки, определяемого уравнением (15). Этот способ обеспечивает получение точных конусов любой длины.

Обработка фасонных поверхностей

Если в предыдущем копировальном устройстве вместо конусной линейки установить фасонную, то резец будет перемещаться по криволинейной траектории, обрабатывая фасонную поверхность. Для обработки фасонных и ступенчатых валов токарные станки иногда оснащают гидравлическими копировальными суппортами, которые располагают чаще всего на задней стороне суппорта станка. Нижние салазки суппорта имеют специальные направляющие, расположенные обычно под углом 45° к оси шпинделя станка, в которых и перемещается копировальный суппорт. На рис. 6, б была показана принципиальная схема, поясняющая работу гидравлического копировального суппорта. Масло от насоса 10 поступает в цилиндр, жестко связанный с продольным суппортом 5, на котором находится поперечный суппорт 2. Последний соединен со штоком цилиндра. Масло из нижней полости цилиндра через щель 7, находящуюся в поршне, поступает в верхнюю полость цилиндра, а затем в следящий золотник 9 и на слив. Следящий золотник конструктивно связан с суппортом. Щуп 4 золотника 9 прижимается к копиру 3 (на участке ab) при помощи пружины (на схеме не показана).

При этом положении щупа масло через золотник 9 поступает на слив, а поперечный суппорт 2, вследствие разности давлений в нижней и в верхней полостях, перемещается назад. В тот момент, когда щуп окажется на участке be, он под действием копира утапливается, преодолевая сопротивление пружины. При этом слив масла из золотника 9 постепенно перекрывается. Так как площадь сечения поршня в нижней полости больше, чем в верхней, давление масла заставит перемещаться суппорт 2 вниз. На практике встречаются самые различные модели токарных и токарно- винторезных станков, от настольных до тяжелых, с широким диапазоном размеров. Наибольший диаметр обработки на советских станках колеблется от 85 до 5000 мм при длине заготовки от 125 до 24 000 мм.

Наружные и внутренние конусы длиной до 15 мм обрабатывают резцом 1, главная режущая кромка которого устанавливается под требуемым углом а к оси конуса, осуществляя продольную или поперечную подачу (рис. 30, а). Этот способ применяется в том случае, когда обрабатываемая заготовка жесткая, угол уклона конуса большой, а к точности угла уклона конуса, шероховатости поверхности и прямолинейности образующей не предъявляют высоки требований.

Рис. 30.





Внутренние и наружные конусы небольшой длины (но длиннее 15 мм) при любом угле наклона обрабатывают при повернутых верхних салазках (рис. 30,б). Верхние салазки суппорта 1 устанавливают под углом в осевой линии станка, равным углу уклона обтачиваемого конуса, по делениям на фланце 2 поворотной части суппорта. Угол поворота отчитывается от риски, нанесенной на поперечных салазках суппорта.

Обработка наружных конусов при смещенной задней бабке применяется для заготовок относительно большой длины с малым углом уклона (рис. 30, в). Заготовку 2 при этом закрепляют только в центрах 1. Учитывая неизбежность износа центровых поверхностей даже при малых углах уклона конуса, обработку ведут резцом 3 в два приема. Сначала обрабатывают конус начерно. Затем производят подправку центровых отверстий. После этого осуществляется чистовое обтачивание. Для уменьшения разработки центровых отверстий в таких случаях успешно применяют центры с вершинами в виде шаровой поверхности. Поперечное смещение задней бабки допускается обычно не более чем на 1/5 часть длины заготовки.

Обтачивание наружных и внутренних конических поверхностей при помощи универсальной копирной линейки применяется при обработке заготовок любой длины с малым углом уклона конуса, примерно до 12° (рис. 30, г). Копирная линейка 1 устанавливается на плите 5 параллельно образующей обтачиваемой конической поверхности, верхняя часть суппорта 4 при этом поворачивается на 90°. Отсчет угла поворота линейки при наладке производится по делениям (миллиметровым или угловым), нанесенным на плите 5. Плита крепится при помощи кронштейнов к станине станка. После поворота линейки вокруг оси на требуемый угол а она закрепляется гайкой 6. В пазу линейки расположена ползушка 7, жестко соединенная с поперечными салазками 2 суппорта. При точении резец вместе с суппортом перемещается в продольном направлении и под действием ползушки, скользящей в прорези линейки,— в поперечном направлении. При этом будет обтачиваться коническая поверхность с углом при вершине 2а. Угол поворота линейки должен быть равен углу уклона конуса. Если шкала линейки имеет миллиметровые деления, то поворот линейки определяется по одной из следующих формул:

где h — число миллиметровых делений шкалы копирной линейки; Н — расстояние от оси вращения линейки до ее торца, на котором нанесена шкала; D — наибольший диаметр конуса; d—наименьший диаметр конуса; tga — угол наклона конуса; К —конусность

(К= (D-d)/l); l — длина конуса.

При а>12° используют так называемый комбинированный метод обработки, при котором угол наклона разбивается на два угла: a1 =11—12°; a2 =a - a1. Копирную линейку устанавливают на угол a1 = 12°; а заднюю бабку смещают для обработки конической поверхности с углом наклона a2=a— 12°.

Способ обработки конических поверхностей при помощи копирной линейки достаточно универсален и обеспечивает высокую точность, а наладка линейки удобна и производится быстро.

Независимо от способа обработки конуса резец устанавливают точно на высоте центров станка.